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bBSTRACT. A new class of nonstationary stochastic processes is introduced 
and some of the essential properties of its members are 
investigated. 
processes and has the potential of modeling some nonstationary 
time series. 

This class is richer than the class of stationary 

Let Xn be a second order stochastic process with mean zero 
and covariance 

A stochastic process Xn is called stationary if R(m,n) depends 
only on m-n, i.e., if R(m,n) = R(m+l,n+l), for all m,n€Z. The 
process Xn is called periodically correlated with period T if 

R(m,n) = R(m+T, n+T) for all m,n€Z. 

As a natural extension of these well-known stochastic processes, a 
linearly correlated processes is defined to be one for which there 
exist scalars aj such that 

R(m,n) - Caj R(m+j, n+j), for all m,n€Z. 
J 

L- 
The relation between these newly defined processes with other 

important classes of nonstationary processes is investigated. 
Several examples of linearly correlated processes which are not 
stationary, periodically correlated, or harmonizable are given. 
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1. INTRODUCTION. The purpose of this paper is to introduce a new class of 

stochastic processes which contains all stationary and periodically 

correlated processes as well as some other interesting processes such as the 

Wiener process. As will be seen, this new class is a natural extension of 

the well studied class of stationary processes. 

As we all know, a zero mean second order stochastic process X,, nEZ, is 

stationary if 

R(m,n) = R(m+l, n+l); for all m,n€Z, 

where R(m,n) = E X S n  is the correlation function of the process Xn. In other 

words, for X, to be stationary, R(m+r,n+r) must be the same for all integers 

r .  Since for many time series in practice, R(m+r,n+r) does not stay the 

same for all r ,  it is then not appropriate to model them as a stationary 

process. However, for our new class, R(m,n) does not have to be equal to 

R(m+l,n+l) or R(m+2,n+2), etc., but equal to a linear combination of these 

correlations. So some time series can be modeled more accurately as a member 

of this new class. 

Recently, there has been a considerable interest in studying classes of 

nonstationary processes [2],[3],[4]. One of these classes which again 

extends another aspect of stationary processes in a very natural way is the 

class of harmonizable processes. For the definition and properties of 

harmonizable processes and some other classes of nonstationary processes, the 

reader is referred to the interesting exposition [l] and the references 

therein. 

In section 2, we introduce our new class of nonstationary processes and 

give a few examples and some preliminary discussion regarding them. In 

section 3, we study some basic properties of this new class. In particular, 
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we will look for their relations with the class of harmonizable processes and 

the support of their power spectra. 

2. LINEARLY CORRELATED AND CONVEXLY CORRELATED PROCESSES. In this section 

we introduce our new class of nonstationary stochastic processes which is a 

natural extension of the well-known classes of stationary and periodically 

correlated processes. We also recall some definitions and results which are 

needed throughout this paper. 

The classes of linearly correlated and convexly correlated processes 

which we introduce shortly are much richer than that of stationary processes 

and hence can serve us better for the purpose of time series modeling. As an 

example, an important nonstationary stochastic process is the Wiener process 

Wn, nE2, whose correlation function is given by 

min(m,n); m,n 2 0 

; otherwise 
R (m,n> = 

One can see that this important process is not even harmonizable (see 

Definition 2.7). Nevertheless, we will see that Wn is a linearly correlated 

process. In fact, although R(m,n) is neither equal to R(m-1, n-1) or R(m+l, 

n+l), it is equal to their average, namely 

R(m,n) = rS R(m-1,n-1) + rS R(m+l,n+l), 

for all positive integers m and n. This then shows that the Wiener process 

Wn is in the new class (see Definition 2 . 1  and Remark 2.3). 

Let ( n , B , P )  be a probability space and Wnl nEZ, be a sequence of random 

variables on this probability space. Throughout, we assume our stochastic 

process Xn to be of second order, namely E1GI2 C for all n, and to have 

zero mean,namely EX, - 0 for all n. 
Now, let's introduce our new class of nonstationary processes. 
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2.1 DEFINITION. Let Xn, ne2, be a zero mean second order stochastic process 

and let S be a subset of 2. The process Xn is called linearly correlated on 

S if there exists a positive integer p and some complex numbers aj, j-0, +1, 

f2, ..., fp such that 
P 

2.3 EXAMPLES. As we know, a process Xn is called stationary if its 

correlation satisfies the relation. 

R(m,n) = R(m+l, n+l), for all m,nEZ, 

and hence ( 2 . 2 )  with p-1, a-1 = 0 and a1 0 1. So any stationary process is 

linearly correlated on 2. 

(b) A process X, is called periodically correlated with period q if its 

correlation function satisfies 

R(m,n) - R(m+q, n+q), for all m,neZ, 

and hence ( 2 . 2 )  with p=q, aq = 1 and all the other aj equal to 0. 

periodically correlated processes are linearly correlated on 2. 

(c) 

of positive integers. 

(2.4) R(m,n) - h R(m+l,n+l) + h R(m-1,n-1), for all m,n > 0 .  

In fact, if m,n are two positive integers with say e n ,  then (2.4) reduces to 

So all 

The Wiener process Wn mentioned before is linearly correlated on the set 

This is because one can easily check that 

n = % (n+l) + ri (n-1) 

which is clearly true. i+* 

(d) Let Xn be a stationary process and a be any complex number. Consider 

the stochastic process 

Yn an Xn. 

Then one can show that Yn is periodically correlated on the set of all 
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integers. In fact, one can see that the correlation function of Yn satisfies 

for all m,nEZ. 

(e) Let Xn be a stationary stochastic process and consider the process Yn 

defined by 

Yn - “xn. 
Then one can easily check that 

R(m,n) - 3R(m+l,n+l) - 3R(m+2,n+2) + R(m+3,n+3), for all m,n€Z. 

Hence Yn is linearly (even convexly) correlated. 

Notes. (a) The linearly correlated process of example (d) is not 

periodically correlated unless la1 - 1. This is because in this example, 

E1XnI2 goes to Q with n. While for a periodically correlated process, these 

quantities stay bounded. 

(b) One can find other examples by replacing the stationary process 

of examples (d) and (e) by a periodically correlated process. 

An important class of non-stationary processes is that of harmonizable 

processes. It is thus’essential to study the relations (if any) that exist 

between our classes of linearly correlated and convexly correlated processes 

introduced here and the class of harmonizable processes. We postpone this 

study until the next section. However, here we would like to recall the 

definition of harmonizable processes as well as some of their properties that 

we will need in the next section. For more detail on these, see [l], [5]. 
i- 

2 . 7  DEFINITION. A process X, is called strongly harmonizable if its 

correlation function can be represented as 

(2.8) 

where F is a complex-valued measure on the unit interval 12-[0,2s]x[0,2x] 

R(m,n) - i2 e -i(mX-n8) dF(X , 6 )  , 



which is of finite Vitali variation. It is called weakly harmonizable if one 

has the relation ( 2 . 8 )  with F being only a bimeasure with finite Frechet 

variation on 12. In either of those cases, F is called the spectral measure 

of the process Xn. 

2 . 9  DEFINITION. Let Xn be a second order process, so that the G ' s  belong 

to H-L*(n,B,P). Xn is said to have stationary dilation if one can find a 

larger Hilbert space K 1 H and a stationary process Yn EK such that 

Xn - ZYn; for all nEZ, 
where 2 is the orthogonal projection of K onto H. 

The following useful result is now well-known, (cf. [l], [ 5 ] ,  [6]) 

2 . 1 0  THEOREM. 

if it has a stationary dilation. 

A second order process X, is weakly harmonizable if and only 

Finally, it is well-known that any stationary process is strongly 

harmonizable and its spectral measure is concentrated only on the diagonal 

D--( ( A l e ) :  A - 8 )  of 12. It is also known (see [4]) that every periodically 

correlated process with period q is also strongly harmonizable. However, in 

this case, the spectral measure is supported on 2q-1 equidistant straight 

lines parallel to the main diagonal of I*, namely on the lines 

Dk - { ( A , 8 ) ;  A-8 + -1, k - 0,?-1,. . . ,k(q-1) 
Q 

3 .  LINEARLY AND CONVEXLY CORRELATED PROCESSES AND THEIR HARH ONIZAB IT.I TY.  In 

this section, we will study the relation between our newly introduced 

linearly and convexly correlated processes %and the harmonizable processes. 

As we have shown, stationary and periodically correlated processes are both 

linearly correlated and harmonizable. Thus, the following questions are 

natural to ask and reasonable answers to them seem essential for any further 

study of the linearly correlated processes. 
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O u e s t i o n  1 .  

O u e s t i o n  2 .  For those linearly correlated processes which are strongly 

harmonizable, what is the support of their spectral measure? 

Are all linearly correlated processes strongly harmonizable? 

The answer to Question 1 is negative: To see this, consider the linearly 

If this process were strongly correlated process Yn - 2" Xn of Example 2.6. 
harmonizable, then 

for some spectral measure F which is of finite Vitali variation. Thus 

and hence 

IRy(m,n)l s IIFll<I,I> < Q 

for all m,nEZ, i.e. Ry(m,n) must be bounded which clearly contradicts the 

fact that Ry(n,n) - 22n Rx(O,O) goes to Q with n. 

This then closes Question 1, but instead raises the following: 

Q u e s t i o n  3 .  Is there any linearly correlated process, other than the 

stationary and periodically correlated processes, which is weakly 

harmonizable? 

Ouestion 4. How about if we replace weakly with strongly in Question 31 

In this section, we first address Question 2 furnishing a complete answer 

to that (see Theorem 3.1) and then prove some other related results. At the 

end of this section, we give a partial arkwer to Question 3 (see Theorem 

3.11) by proving a dilation result (see Theorem 3 . 7 )  as well as giving an 

example showing the answer to Question 4 is on the positive side (see Example 

3.12). 

The following theorem gives a complete description of the support of the 
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spectral measure of linearly correlated stochastic processes. 

3 . 1  THEOREM. A strongly harmonizable stochastic process X ,  is linearly 

correlated if and only if its spectral measure is concentrated on a finite 

number of straight lines parallel t o  the main diagonal of I2 (not necessarily 

equidistance). 

PROOF. Suppose that the spectral measure F of a stochastic process X, is 

concentrated on say k straight lines parallel to D - ( ( A , 6 ) :  be), so one can 

find real numbers dj, j - 1, 2 ,  ..., k such that the support of F is on 
k k 

j -1 j -1 
the s e t  U { ( X , B )  : B - X + dj ). Since the function II (e- i(A-6) ,eidj) 

vanishes on the support of F, we can write 

k 
e-i(Xm-en) II 

j -1 
(e-i(X-B) -eidj) dF(A,B)-0 for all rn,n€Z. ( 3 . 2 )  

Multiplying the product in (3.2) out, we get 

k 
e-i(Xm-nB) (C cj (e-i(X-e)j) dF(X,B)-0, for all rn,n€Z. 

j -0  

This means 

k 
Z Cj R ( m + j ,  n+j) - 0 ,  for a l l  m,nEZ, 
j -0 

which clearly means that our process Xn is linearly correlated. Conversely, 

suppose Xn is a linearly correlated process which is strongly harmonizable. 

So we have ir- 

Without loss of generality, we can take aj-0 for all negative j ' s .  So, for 

all m,nE2, we can write 
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or 

k 
This means that 1- C 

j -0 

Thus, the support of F must be included in the set 

aj e-ij(A-e)-O for a.e. ( A , B )  with respect to the 

measure dF. 

for A-8 and listing its distinct real solutions by dl, d2, .,. dj, we conclude 
that the support of F is included in the set 

P 
u { ( A , B ) :  A-8 = dj) 
j -1 

2 consisting of P straight lines parallel to the main diagonal of I . 
The last theorem gives a complete description for the support of the 

spectral measure of a harmonizable linearly correlated process. Its support, 

as in the case of stationary and periodically correlated processes, is on a 

finite number of straight lines parallel to the main diagonal. 

these lines do not have to be equidistant. 

However, now 

3 . 3  REMARK. One can easily check that for strongly harmonizable stochastic 

processes every linearly correlated process is convexly correlated. In fact, 

if we have a linearly correlated process whish is strongly harmonizable, then 

as we saw in the second half of the proof, its spectral measure is 

P 
u { ( A ,  0 )  : A-8 - -dj ). 
j -1 

concentrated on So 
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where do - 0. This means t h a t  

Expanding the  product and wr i t ing  the  r e s u l t i n g  equation i n  terms of the 

c o r r e l a t i o n  func t ion ,  we g e t  

i?+l 
C bj R (m+j,n+;l>-O; f o r  a l l  m,nEZ,  
j -0 

where b j + l  - 1 and the  o ther  b j ' s  come from 

I f  w e  put  0 f o r  A-6 on both s ides  of  (3 .4) ,  we g e t  

1 1 
1 + C  b j - 0  o r  C ( - b j )  - 1 

j -0 j -0  

This  fact  toge ther  with (3.5) proves our claim. 

L e t ' s  c a l l  a process pos i t i ve ly  convexly co r re l a t ed  if it is convexly 

c o r r e l a t e d  and i f  i t s  c o r r e l a t i o n  funct ion satisfies 

P P 
3 . 5  { R(m,n) - 2 a j  R(m+j,n+j),  with C a j  - 1 and aj z 0 f o r  a l l  j. 

l j  1-1 I1 1-1 
Ths following r e s u l t  is somewhat su rp r i s ing .  

3 .6  THEOREM. The only pos i t i ve ly  convex1.- co r re l a t ed  processes which are 

s t rong ly  harmonizable a r e  the  pe r iod ica l ly  co r re l a t ed  ones. 

PROOF, 

Suppose a l s o  t h a t  Xn is s t rongly  harmonizable with s p e c t r a l  measure F. 

Let Xn be a p o s i t i v e l y  convexly co r re l a t ed  process s a t i s f y i n g  (3.5).  

As i n  

the proof of Theorem 3.1,  w e  see  t h a t  the  support  of F is included i n  t h e  se t  
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which can be rewritten as 

P P 
( ( A l e ) :  C aj COS j(X-6)-1 and c sgnj aj sin j ( b e )  - 0). 

lj 1-1 Ij 1-1 

P 
Now, since all a, 20 and Zaj-1, one can see that C aj cos j(A-61-1 is 

I J  1-1 
possible only if cos j(X-S)-l whenever aj + a-j + 0. 

S - (j : aj + a-j z 0 )  , we conclude that the support of F is included in the 

set n ( ( X , B ) :  cos j(X-8)- 1). 

So, letting 

Let q be a common divisor for the integers 
j ES 

in S .  Then one can see 
q-1 

n ( ( X , B ) :  cos j(A-8)- 1) s u { ( X , 6 ) :  A-6 + 
j ES n- - q+l 9 

Thus, F is concentrated on 2q-1 lines 

((x,~>:A - 8 +a), n-0, +I, ..., (q-1). 
9 

This in turn means that 

e-i(mX-nS! (eiq(A-e)-l) dF(X, 6)-0, for all m,n. 
I 4 

This, rewritten in terms of the correlation function gives 

R(m,n) - R(m+q,n+q), for all rn,n~Z. 

Thus, Xn must be periodically correlated with period q. 

Now, we turn to Question 3 .  However, befcqre that we prove the following 

dilation theorem which is crucial for our development. This theorem is of 

course of independent interest. This not only shows that a class of convexly 

correlated processes have a stationary dilation, but also gives the precise 

form of their stationary dilation processes. 
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We say a process is one-sided positively convexly correlated if its 

correlation function satisfies 

-1 

j - - P  
with aj 2 0 and C aj  - 1. 
3 . 7  THEOREM. Any one-sided positively convexly correlated process has a 

stationary dilation. 

PROOF. Let Yn [C,p+lXn-p+ll c-p+2Xn-p+2 8 ... c&,] be a vector random 

process with values in the Hilbert space Hp, with co-1 and, for -p+l SjS -1, 

c, is any complex number satisfying 

( 3 . 9 )  

It is quite clear that 

Xn - E Yn; for all m,nEZ, 

where $:Hq + H is the orthogonal projection sending each element of Hq to its 

first component. So we must show that Yn is actually stationary. To show 

To see this, consider the expression 
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P-1 - = IC-p+j 
j -1 

R(n-p-l+j, m-p-l+j) 

Now, from ( 3 . 8 )  we see that 

( i) lc0l2 - 1 

( iv) Adding the equations in (ii) to those in (iii), we get  

which gives the coefficient Ic-p+j+l I - Ic-p+j I in (3.9), for j - p-1 to be 
IC012 - 1c.112 - 1- (1-a-13 - a-1. 

Substituting from (i)-(iv) in (3.10), we get 

which is zero by (3.7). Q.E.D. 
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We can now prove the following which provides a partial positive answer 

to Question 3 .  

3 . 1 1  THEOREH. Every one-sided positively convexly correlated stochastic 

process Xn is weakly harmonizable. 

PROOF. Since by Theorem 3 . 8  the process X, has a stationary dilation. The 

proof can be completed by appealing to the main Theorem of [SI which says: A 

stochastic process is weakly harmonizable if and only if it has stationary 

dilation. 

In connection with last result, one may ask whether linearly correlated 

processes are weakly harmonizable. The answer is no. For instance, the 

examples (d) and (e) mentioned in section 2 can not be weakly harmonizable. 

Because any weakly harmonizable process having a stationary dilation should 

have a bounded sequence of variances and this was not the case for these 

examples (as we noted before), 

The following example shows the answer to Question 4 on the positive 

side. 

3.12 EXAMPLE. 

[0,27c] and define a new stochastic measure Y(*) on [0,2.rr] by 

Let 2(*) be an orthogonally scattered stochastic measure on 

Y(A) - Z ( A f 7 [ 0 , 2 ~ ] )  + Z ( A f l [ 0 , 2 X ] - f i )  

where B-a - (b-a:EB). Consider the strongly harmonizable processes 

Xn - Je'in8dY(8) 
One can easily see that the spectral measurk of X, is concentrated of the 

diagonal A-8 and lines A - 8 - f l  of 12. By theorem 3.1 X, is linearly 

correlated and it is clearly not stationary or even periodically correlated. 

Another important feature of stationary processes which turns out to be 

extremely useful is the existence of a unitary shift. However, when it comes 
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to nonstationary processes, even the existence of a shift operator is  not 

always guaranteed [ 3 ] .  So, it is nice to know when a nonstationary process 

does have a well-defined shift and if it does have one whether it is bounded. 

We conclude this work with the following result which examines the 

existence of shift operator and its boundedness for a positively linearly 

correlated process. 

3 . 1 3  THEOREM. Let Xn be a positively convexly correlated process whose 

correlation function satisfies (3.5). If a1 > 0 ,  then X, has a bounded 

shift. If a-1 > 0 too, then its shift is boundedly invertible as well. 

PROOF. Take any finite linear combination I: bkXk of Xk's, then we can write 

11 akxk 1 1 2  2 bkbk' (xk,xk') 
k k,k' 

k,k' ' bkbk' [,:, -1 aj (xk+j B xk'+j)] 

This implies that 

Now if a1 > 0 ,  it is quite clear from (3.14) that the shift operator defined 

via 

is well defined and bounded. This completes the proof of the first part. 

The second part can be proven similarly using the inequality: 
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3 1 5  RE%iRK. I n  t h i s  present  work w e  have only considered discrete t h e  

p rocss s i s .  Wa hrz planning t o  study continuous time linearly correlated 

p r o c i s s i s  i n  f u t u r e .  It looks l i k e  they have nice app l i ca t ions  i n  . 
I 

ing inzer ing .  For example; i n  analyzing the h e l i c o p t e r  noise wbp’the sound 

r ihching  an observar c o n s i s r ,  of two per iod ica l ly  c o r r e l a t e d  random nolo0 

p rocasses  gencraced by rha main and tail ro to r s .  Ordinarily, the per iods  of 

chase KUO s ignh l s  are incommensurate. One can see that t h e  h e l i c o p t e r  no i se  
.’. 

Y i s  Khan n o r  pc r iod ich l ly  cor re la red .  However, this continuous tim process  

tu rns  our: t o  be l i n z a r l y  c o r r e l a t e d  and hannonizable. This a p p l i c a t i o n  1s 

i l l u s c r a t c d  i n  ch i  following f igu re .  

HELfCOPTER NOISE FIELD 

Y 

Observei 
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